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I. EVO N JNWP MODELS 

Routine forecasts were initiated at JNWP on 6 May 1955 using

a 3-level model (see Charney (1.1) ) covering an area somewhat larger

than the United States. Due to the importance of boundary effects, efforts

were made to extend the forecast area as much as possible within the limita-

tions of the IBM 701 computer. The first step in this direction was the

introduction of an experimental once daily barotropic forecast (see Charney

and Phillips (.. 2) ) on September 29, 1955, covering approximately the area

north of latitude 20 in the western hemisphere and north of latitude 50 in the

eastern hemisphere. This was followed by introduction of the 2-level thermo-

tropic model (see Thompson and Gates (1. 3)) on 3 April 1956 covering an

area intermediate between those of the 3-level and barotropic models. The

S results were so encouraging that on 2 July 1956 barotropic forecasts were

increased to twice daily and the 3-level model was dropped completely in

favor of the 2-level thermotropic model.

When the IBM 701 computer was deactivated on 3 June 1957, to

make room for the IBM 704, only the barotropic forecast was continued during

the transition period. The thermotropic model was never reprogrammed for

the 704; instead a non-integrated 2-level model was developed. This was

put into operation on 4 August 1958 and after 3 weeks was- replaced by the

current "mesh model"; so-called because it meshed the 500 mb barotropic

forecast with the thickness forecast equation of the non-integrated 2-level

model.
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This model has the following characteristics:

a. The 500-mb barotropic forecast can be computed as

a simple marching problem from one field of initial data

and one tendency equation; thus there is no feed back

from data at other levels at any stage. The dependent

variable is the stream function on the 500 mb surface

obtained initially by solving the balance equation by the

method described by Shuman (1.4). The forecast equa-

tion is the vorticity equation modified as follows:

(1) The vertical advection of vorticity and,

the tilting terms are omitted.

(2) A stratospheric effect (i. e, Rossby free

surface divergence and reduced gravity)

is included to stabilize (i.e., prevent rapid

retrogression) of the ultra-long waves.

(3) A term is included to approximate the

generation of vorticity by terrain induced

vertical motion.

b. The thickness tendency (or geostrophic thermal vorticity)

equation contains the stream function of the mean motion as

an independent variable and thus cannot be integrated as a

simple marching problem. Mean level data must be

supplied at each time step. As first ran, the 2-level
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del contained tendency equations for both the mal

vorticity and the vorticity of the mean motion and had to

be integrated as a marching jury problem - each equation

requiring the output of the other at each time step. Since

the mean level forecast obtained by this procedure was

neither better than the barotropic 500 mb forecast in

overall accuracy nor significantly different in the pre-

diction of baroclinic effects, it was deactivated and the

mean motion data required for the thickness forecast

supplied from the barotropic output. The thickness

forecast equation is the geostrophic thermal vorticity

equation modified as follows:

(1) The vertical advection of vorticity and the tilting

terms are omitted.

(2) The divergence of the thermal wind is approximated

by t

(3) 3n is in turn approximated from the isentropic

thermodynamic equation,
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II. THE BAROT PIC MODEL

A. Derivation

Case studies by Vanderman and Drewes (2. 1) and Arnason and

Crestensen (2. 2) indicate that the vertical advection of vorticity and tilting

terms tend to be systematic and of opposite sign and to very nearly cancel

each other over the whole field. Accordingly, unless both terms are re-

tained neither should be retained. These findings were confirmed by a

theoretical investigation by Wiin-Nielsen (2. 3). Moreover, in finite differ-

ence form the vertical advection term is normally computed over a single

grid distance and the tilting term over a double grid distance. This leads

to inconsistent truncation between the two terms which introduces a systema-

tic error into the vorticity of the mean motion when both terms are retained.

Accordingly both terms have been dropped and the vorticity equation in the

current operational model appears as

(z.1) - + TM° <:X - ' _

The vertical velocity is considered to have both synoptic and

terrain induced components. If we assume that the vertical velocity at the

ground is due entirely to terrain we have

(2.2) 39 v ( * 7 ( S r)

producing divergence at the.equivalent barotropic level of

(2.3) '. '"' -
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e now derive an expression for the synoptic component ot

the divergence following Wiin-Nielsen (2.4). We use the thermodynamic

equation and equivalent barotropic assumptions.

(2.4) \ (] A( , p" .- = 

where the star denotes values at the equivalent barotropic level, assumed

to be 500 mb.

This assumption implies that the thermal wind is parallel to

the wind itself and thus there can be no temperature advection. Accordingly

the thermodynamic equation reduces to

(2. 5) ; t'Q +

Using for the moment the quasi-geostrophic approximation

(2.6) \Y = - < A / -' 

. (2. 7)

and consequently

(2.8) )
I $- s 'dP -- J d St

Here the stream function, V ', is defined in terms of the geopotential by

(2. 9) V1 -_- (See Phillips (2.5))
, £~~~~~~~.
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(8) on-ly the variation of S with pressure

_9 cC - /D IL \ - ,/

needed .

d -
(2. 1 0o) S -

72 .r 9 r R r

Since = I g8 the second term is an order of magnitude

smaller than the first. Thus to a good order of approximation, at least in

the neighborhood of p*:

$ s#//~~~', 2~- - IS~ (~
rC

Acc ordinly

(2. 13) Dp 
- s A. J? ,) ? -- j- S a d14 ) e )' -

zf. _~~~~~~_(_4 d14 ) -p
s*rw jV f St

If we now assume that the divergent part of the horizontal wind

is negligibly small so that the latter may be approximated in terms of a

stream function and at the same time substitute (3) and (13) into (1) we obtain

the prognostic equation(2.14) ( - ) - J ~ - r ' J( 1.

Here a "i 

Setting a = . 2 in accordance with past practice

(2. 15) - 4 __ --d - 1, Sad °/.
-/

(2. 12)

)
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et r , 7f the lapse rate of the standard atmosphe' then

* Xor -I / ?.1.,- /3 - c.1.
(2. 16) S p,.so(8 \ I s'

z___ / d,4, / C.7.J,,
(2 i 7) (

The so-called stratospheric term (the one containing q) of

equation (14) was derived by Cressman (2.6) using Phillips' (2. 7) tank

model. Since the physics is more easily visualized in this derivation it is

repeated below.

Consider two homogeneous and incompressible fluid layers of

a densities / and l e / , bounded by rigid horizontal plates at z = 0 an(

* = H. For each fluid layer we may write the primitive equation of horizontal

motion and the continuity equation as follows:

+F -e k~x' : c -,or
(2.18) X q xV~vV t ~,r °

(2.19) \.W + - = 6

We now adopt the quasi-static assumption, viz; the vertical acceleration is

small and the balance of forces in the vertical may be' expressed by the hydro-

static equation. Let P(k 7 ) be the pressure on the top of the upper

fluid created by interaction between the fluid and the rigid plate at z = H and

let t(i( , J be the height of the interface between the two fluid layers. We

then have in the upper and lower fluids respectively

*; ./,2) , ,3, ) : ( 

(2 (,.j3 t Q +207()-~) *?a(,-;~?
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-Z .- V, F 0 /

:' - f f , 7 Z " -� g -.�
�O 0 � (O

(2.22) 7 - E i + (I-& 4 9-/
I-/C _.--_

Z' and Z give the topography of pressure surfaces in the upper

and lower fluids respectively. The topography of all surfaces in each layer

are the same due to the assumptions of homogeneity and hydrostatic balance.

Thus the horizontal velocity of each layer is independent of z and the continuity

equation may be integrated directly

'5 ~ ~ 3
(' 23) -

(/V. 'Vx) operating on (18) yields the vorticity equation

(z2. 24) \7 8? 7VW = (

Expressing the vorticity geostrophically:

(2. 25) 5 2 ,j

(23), (24)

(2. 26)

(2. 27)

and (25) give for the lower layer

/7 de

If the upper layer is considered to be inert, (22) yields

(t-EJ { t

(2.21)- . d

wher e

VA 7 Z.-g 7

V .IV
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Adding to this the assumption that the motion of the lower

fluid is parallel to the contours of the interface ( i. e., \V ¶T C ) (26)

becomes

- (2. 28) - t

Comparing this with the non-divergent barotropic vorticity

equation of a rigid top single fluid tank model, we see that two additional

effects manifest themselves in (28). First, there is a term containing the

divergence wvhich arises because the upper surface of the active fluijd

(i. e., the tropopause in the atmospheric analogue) is allowed to vary.

Secondly the magnitude of the divergence is amplified by the factorA. This

is due to the reduction in the gravitational restoring force on the perturbed

interface compared to that which would be exerted if the upper fluid were

not present, i. e., ;' (a - O

To incorporate this term into the non-geostrophic barotropic

model, a stream function must again be introduced. An approximation

similar to (9) is used.

(2. 29) 5

Substitution into (28) and adding the terrain effect from (14) yields

(2.30) (.,, o _ _ - (t X7(9 % o)



in which the str heric term has been linearized by usia n value

of the stream function where it is undifferentiated andS is a representative

ratio defined by

(2. 31) A< :

Evaluationoof ~ and consequently of ,6( from atmospheric

sounding data appears doubtful. However, noting the correspondence

(2.32) 3 t

where i is the height of the 500 mb surface and h is the height of the tropo-

pause, Cressman found a value of ,,df 4. He also made a series of forecasts

from the same initial data with values of . ranging from 0 to 8. These in-

dicated an optimum value Xq = 4 with little change between a = 4 and .' 8.

Comparison of (30) and (14) reveals the-correspondence

(H/,S -; /o-a)(5sJs, -S7 o$y
(2. 33) l,.o - .

Due to the numerous assumptions involved in this determination

of£f, the empirically determined optimum value of e = 4 is still used.

B. Engineering of the Barotropic Equation

In binary computers multiplications and divisions by numbers

other than integer powers of 2 consume approximately 10 times as much

computational time as other operations. Further, keeping track of decimal

points is greatly facilitated if-all numbers used are expressed as a number

less than unity times an integer power of 2. Accordingly in iterative 
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computa economy dictates that constant coefficients be reduced to a

minimum by combination and by scaling of independent variables in units

which absorb recurring coefficients other than integer powers of 2.

Constants and scaling used in the barotropic program (WP5Z3)

are as follows:

UNITS

J - rl /. ,15 dql7C el -l, q / / °
/4

... -. /, 'v tt"JI C, >

db-
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X _ 99 O C sec-
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i

/,f. 51(of ^ .-. e

s e c.

5 eG



S

t'

-12-

SCALING
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FINITE DIFFERENCES
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The equation solved in the barotropic model at the present time

is

(2. 35) X(

This is solved for successive 2-hour changes or tendencies of ~-

For the initial iteration, A-t k is divided by 2 and then added to the initial
A

stream function, V', , to give a one hour forecast stream field. The forecast

is then continued as long as desired by iteration of the formula

A I

(2. 36) -w ZsJc

The barotropic forecast is computed by the library program desig-

mated WP523. This program consists of a card deck and File #7 of the library

tape, designated logical tape 1. The card deck feeds an initialization program,

the initial 500 mb heights and stream function data, decision tables and code

for printing the geostrophic isotachs. The library tape contains four records

with contents as follows:

Record #1 contains 4040 words (76108)
A 

0-1976 (0-36708) contains f in the LHW and p in the RHW.

1988-3960 (37048- 75748) contains Ml in the LHW and
8 8

zeros in the RHW.

Record #2 contains 1956 (36448) words constituting the utility

programs and the main part of the barotropic program.
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Record #3 contains (2162 (41628) words containing mainly the

smoothing and print programs WP203, and 210.

Record #4 contains 2162 (41628) words containing mainly WP9.

In writing the barotropic program, the data decks used to supply

£ and p contained these fields in the units:

A,~~~~~~~~~~A0
= ,S 9 '½ P. 7a2/ 

These were then multiplied respectively by the constants .12509 and .8192

thus obtaining ?and p as defined above.

(To counteract the non-conservation or loss of vorticity due to

iterated truncation the stream function is multiplied by the factor 1.13 before

the barotropic forecasts begins. This factor is removed before outputting

stream function data for relaxation, history tapes and punching.)

The 500-mb stream function read onto tapes 2 and 4 initially and at

the end of each time step contains the coefficient L = 0.741252952 which is

not otherwise used by the program.

To avoid handling of large numbers all pressure height and stream

function data are punched and handled in the computer as departures from

normal. Appropriate constants are inserted in the print programs to obtain

printouts of absolute values.
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III. THE 2-LEVEL MODEL

A. Derivation

An atmospheric model is assumed in which:

(1) The wind varies linearly with pressure.

(Note that this is the thermotropic rather than

the equivalent barotropic assumption).

(2) The vertical velocity has a maximum at the

level of non-divergence, assumed to be at 600 mb

and vardnishes at 200 and 1000 mb. The variation

of L with pressure between these levels is

at most quadratic in p.

(3) The termal wind and thermal vorticity are

quasi-geostrophic.

(4) The vorticity equation may be approximated

by equation (Z. 1).

Equation (2. 1) is now applied at 400 mb identified by subscript 1

and 800 mb identified by subscript 3 and the latter equation subtracted from

the former yielding

(3.1) -YJ-Qr

Using modeling assumption (1) we define bar and prime quantities as follows:

(3.Z) ¢ 3= f') -- 2 a. i A. tf4e2~ ~'..(3
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! /evC midway between levels 1 and 3.

(3C3) () ( ' 

0

Equation (1) now takes the form

-3.4) .2. 7 V Z--W .'7 - 0? )

(3.5)

Here c.Z

simplifies

We can evaluate 

is p u e t- t

is placed under the A to

by the finite difference ratios.

s ,Uo ! P z f 6o .) h

identify the origin oP this term. (4) nowidentify the origin of this term. (4) now

to

7t "
(3.6) a - ' -. V". 7'? - z : 03

It is apparent from (5) that W is non-divagent and may be

expressed in terms of a stream function. Also, using modeling assumnption

(3), we can express the thermal wind and vorticity in terms of the thickness.

(3.7) kV - K X V1

, ! yxv /\V = zf S 2f V

Introducing these in (6) we obtain

I j.I & " +(3.9 V :) #' - .; 0

(3.8)

0 0



0
We now eliminate C(q

(3. 10) 

(3 =11) 
(3. 11)

R
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using the adiabatic thermodynamic equation

gOf_ - + 6vPe J' C

di saa /2v(C)/

(3.12) be>%@(/ ° (+-co^Yqp

Since we are working in pressure corrdinates the first two terms

on the right of (10) are computed from (12) holding the pressure constant.

Multiplying through by the specific volume, O, (10) becomes

(3.13) 0 '= V OL -_

Evaluating

(3.14)

Vl: at the mid-level using a finite difference ratio yields

0i : - - i (a)79Su
(3. 1a + \7 11

(3. 15) )X1, ^ Shi f of

Substitution of this in (9) leads to the prognostic thickness equa-

tion giving the thickness tendency in terms of space derivatives only of the

initial fields of 800 to 400 mb thickness and 600. mb stream functions.

(3.16) (v 7 ;) _
_ (2)
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her e

(3.17) 6

To complete the system of predictive equations, an equation for

is required. Such an equation can be obtained either by applying

equation (2. 1) at levels 1 and 3 and adding or by applying it directly to level 2.

The latter procedure leads immediately to the non-divergent barotropic vorti-

city equation

(3.18) V 

The former procedure leads to

~~ _ - ~~~- 14f (3.19) 4 =f 4-
at

which contains two additional terms; the Sutcliffe development term and a

divergence term. The Sutcliffe development term, the second on the right

of equation (19) is highly correlated with the term preceding it. In fact, in

the equivalent barotropic model it appears simply as an incr-ease of approxi-

mately 25% in the coefficient of the vorticity advection term, 7" t d

the divergence term, the third term on the right of equation (19), contains

two quantities which are correlated, i.e. A and . Thus, this term

tends to have the same sign over the whole field so that repeated iterations

lead to a net drop in heights over the whole field with a maximum in the center
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Accordingly equation (19) was applied in the form

(3.20) v -E - J -W v J+ - '-h( '!;J 4Sf if
For reasons mentioned above it was considered unlikely that the

feed back from the thickness field expressed by the Sutcliffe term would pro-

duce a forecast significantly different from that already being produced by the

operational barotropic model.

This belief was confirmed by a 2 1/2 week trial period in August

1958 during which forecasts were prepared both with the 2 -level model using

equations (16) and (20) and with the operational barotropic model using (2. 30).

While this result was disappointing from the development point of view, it was

operationally advantageous in that the cheapest 500 mb forecast also proved to

be at least as good as any available. Accordingly use of equation (20) was dis-

continued and the current "mesh model" initiated.

B. Modifications resulting from changes in
levels of input data

Since 800 mb is not a standard data level, the 2-level model was

originally planned to use 850 and 400 mb data. For reasons of economy 850

and 500 md data were actually used. With the thermotropic modeling assumption

that the wind varies linearly with pressure or that the thermal gradient is inde-

pendent of pressure, any level of input data can be used.

Equation (16) is linear in h and thus holds regardless of the thick-

2ness layer used so long as the value of .pin a is consistent with the mode]ness layer used so long as the value of in Or is consistent with the mode;
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Rewrite (14) using subscripts i for input and m for modal levels

(3. 21) 9 J

(3. 22) % ' 4- ( A = constant- thermotropic model)

(3.23) : 
2,:

(3. 24) C -I-- a A

(3.25) A "# s A- A- ; - ((3. 25)+Wgo.

Substitute in (15) and (16). In (16) the coefficient hi appears in

every term and thus leaves the equation unchanged. From (15)

~(3.2_6) /Ad t- *h )t

Thus regardless of the levels of input data, the only change in the equations

will be the coefficient f(4,i) in the D -equation.

However, input data levels which most accurately represent the

vertical wind shear ,and horizontal temperature gradient of the entire tropo-

sphere should 'give best results. Thus presumably the greater Ap the better

so long as data levels do not lie about the level of maximum wind or tropo-

pause or so close to the ground that the data are influenced by surface effects.

From this it again appears that input data level near 800 and 400 mb would be

best.
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C. Epgineering of the thickness forecast equation

Constants and scaling used in the thickness forecast program

(WP566) are as follows:

UNITS

Q7 L4 (O 9 /V
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14. 91( -1 X Jo1 c ..

-I
SccC

J. 4 S-fi'4 A . $o S ,lp¶
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J, I J I _
L - 5, 

x s0
- I

5a C.-
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.-f

C4 t:
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o 7.5 44-a 

d[ - :r J J is 4-e -Sf ez"b
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FIRST SCALING
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Substitution in (16) yiedls:
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ling was established to prevent spilling. We introduce a

second scaling to reduce the number of multiplicative-constants which are

not integer powers of 2.

SECOND SCALING*< ~ =A~ A An- (-~zz :5 7 9O06)t =. l(e S7 17I$ Z) 7"t'Y * o6 S4 zj L
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We can now write equations (27) and (28) as

(3.27) A 2 - 527

(3. 28) / ~ CAvZ 43 S(s• 4

2- 4P(, agf ~A
where '

A .= .5792

B = .065629

C = .8633

D. The Stability factor and vertical motion 

The quantity 5 defined by equation (29) conveniently represents

the convective stability of dry air. In the development of most NWP models

constants or quasi-constants such as f and AP are lumped with S and

the combined term is christened the stability factor. Thus, the term stability

factor has no commonly accepted definition. In this note the term

~(3. 29) 5 C - 9T 3pj y/(

will be called stability or stability coefficient term and the term

(3.28) CT P



-27 -

ill be called(bility factor. The stability is a function of

but it varies most strongly with pressure. In 2-level models $ is

usually treated as a constant but need not be. The variations of S may be

approximated through the thermodynamic equation as Thompson (3.1) did or

by relating 5 to W as Vanderman is now trying in applying equation. (16)

to 500 and 200 mb.data.

In Table 1 are tabulated values of S for the standard atmosphere

computed from the three formulas indicated. The finite difference ratios pre-

sumably give mean values of S for the layers concerned.

TABLE 1

Values of the stability coefficient - computed from
-f computed from

e standard atmosphere as point values and over the layer 800-400 mb using

the formulas indicated.

Pressure
level S in 10-4 c. g. s. units
(mb) S.- S.= 1 S =

L~ 9 o oa . Skv-
100 179 (800-400 mb level
200 44.8 using 600 mb
300 6.96. values of g 6d'
350 5.26
400 4.13
500 2.76
600 1.98 2.07 1.91
675 1.60
700 1.50
800 1.18
850 1.06

900 954
1000 .787

It is apparent from (17) that 5 is not simply a function of

T)

: r

i

i

i
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stability since it also contains 4P and . These are fixed by the

modeling assumptions at 400 mb each. Accordingly we obtain the values in

Table 2 for Q from the values of s in Table 1.

TABLE 2

Values of tY (in 108 c.g.s. units) using the values of

from Table 1 and 4p = 0 a

S S(- ) s -- S -
-0 s-

.317 .332 .306

In his original derivation of the 2-level model Thompson (S./)obtained a
a-

(T -equation. Since he planned to use 850 and 400 mb input data he defined C'

in terms of these levels and let p - p = 450 mb. Revised computations

of the stability factor have continued this practice.

The most recent revision by Captain John A. Brown, USAF, com-

putes summer and winter values from the equation

(3.30) 0 - C (C -P _ oC

where Z : A -? = ~S - 46 a - = 
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X - 1 6 1 a 0/4 J 3

-7--7- 

406 - C ,C

X A. S zJG~~~~~~s 4 SX~~~. P
4.3" /

(2 .Xo 3J (= - /-

c7r '(' ,50 ,,n¢~,..) : . 43's- X /a 2

(7'"( ^-Ve,,.) - , 5-¢ ~ X So

These values are considerably larger than those in Table 2. Part of the

increase in the winter value is due to an actual increase in the stability of the

atmosphere but both values are considerably larger than those of Table Z.

due to the larger value of 6P . This can be considered in two ways - first

as a change in the assumed c,-profile or secondly as an artificial increase in

static stability. In either case the effect of the larger value is to reduce the

effect of the divergence or vertical motion term in the thickness equation and

thus generally to reduce the magnitude of the thickness tendencies.

The £) -equation is corrected for the effect of the larger Ab by

vitture of containing 4 p explicitly and by a multiplicative constant I .42
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representing the r of 850-400 thickness to the 850-500 thicknes hese 

corrections, however, cannot correct for the effect of on the

thickness tendencies which in turn influence C) .

We may write the correct ed 0-equation as

-_(i,~ 4>O+ i74 -7A 7 
2-- + Io f 70 -2 z' -_/

- 27 / . O -
or

(3.31) Z -. (. 3 7/ A)O ,A 7

7A
2e~~*Jil X4 (S0 I C- 3,,)A 2~.

2 e t A) - s1o <)~~"" ,

+ ~ t : -- ̂ /

a r
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A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3-32) 7. . -/- 4 AJ ,

A = .5972

D = .C

Equation (32) is the one from which vertical velocity is computed

by the mes h model. The - -maps.printed by the program print tens, units and

tenths of the negative of units of eq. (31), i.e., - cJ¥,e. '"i se'/ at every

other grid point with contours at intervals of .1 .5 units.

Since the computed value of omega is for the 600 mb level, we can

obtain the equivalence in cm sec-l by taking the local derivative on the 600-mb

surface of the hydrostatic equation

(3.33) r - - - - - z

- at 60 rob,

Thus the printed 63 -maps are--in units of .78 cm sec at 60 mb.

4. 7090 VERSION OF THE MESH MODEL

On 8 July 1960, the IBM 704 computer was deactivated to make

room for an IBM7090. During the transition period the mesh model was run

operationally on the National Bureau of Standards' 704 computer.

On 12 September 1960, routine operations were initiated on the

7090 with a new version of the mesh model. Other than programming changing

this model differs from the 704 version in the following respects:
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a. The mountain term has been improved W

and a surface friction term has been

added. See Cressman (4.1).

b. The factor 1.13 described on page 15 for

counteracting iterative trurncation of the

vorticity field now multiplies only the

vorticity advection term.

d. Stream field data output to the history

tape no longer contains the factor

L = 0.741252952.

The 7090 mountain term treats the ground pressure and wind speed as 

variables throughout the term and assumes that the terrain induced vertical

motion is completely compensated by horizontal divergence in the troposphere,

i. e., below 200 mb. Equations (2.2) and (2, 3) are now expressed as

(4.1) =_.

(4. 2) -- - z ° -2Xo)

The constant C = .- is replaced by the variabler defined as follows:
/S-o o

(4. 3), ZL O.= = - -° 7--6- x
Coo.0
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For terrain slopes reaching the 500 mb level the 7090 mountain ter

is 16 2/3 times as large as in the 704 version.

The friction term is derived as follows. Denote the components of

the mass transport due to surface friction by /M and /I'y

os

AX U eL Qz.
f

co

/-1y Z f rz

Then the surface stresses & and are given by

(4.5) la

We can now write an expression for the vertical velocity, +, , at the top of

the friction layer due to mass divergence induced within the layer by surface

friction. p, /14

3. -' - Vr J ( 1 NV
pt
5

(4.6)

~ OY 7 W'

>gr(9Z. 9 )

f dy S

Or expressing the stress in terms of a drag coefficient, CD , times the kinetic

energy per unit volume.

(4.7) 11

m

(4.4)

" ./ d~/

'�M'* E-L� -

if To Y (C Df V; ) - ) X (Co V; VJ I7



, . -_34-
where .U~ and U are the components of the ground level wind of speed Vo

Using the same approach as for the mountain term leads to the following fric-

tion term for the barotropic vorticity equation

(4.8) ?ap-

With these changes the complete barotropic forecast equation in the 7090 ver-

sion of the mesh model is as follows

(\ - 'X -

(4.9)

-,C _ PI-2s of) 'AX MAD' xIl

Scaling of the 7090 barotropic model is the same as in the 704 version
A -

except for ! P e ~j are defined as follows

J2-3
-= 3.2 ? (o

r' = f0 . -5.2SX?

- . -2tI'[cD * V&) '~ (C

.T(4, .Pa )-nor
(6PI -2.XS09)
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ressing equation (4. 9) in finite difference form, multiplying

through by 7ZO200 //, scaling one }0 in each term and substituting values

leads to equation (2. 34) for the left hand side and the vorticity advection term.

However, the latter is now multiplied by 1.13 increasing the coefficient to 4. 5.

The mountain term becomes

- 4..03'2 - / ('t/' 

?° P r ()P J() X
7.4r0 e (2-2 p^

The friction term becomes

-od>( 
-&t '(E:-|[vSX tl 4 ( +)7 5)j7

-M 22n; CJ2 E S;)+C 

- 4.0ooa. ,z~ r.n '7z

m,~~~ p .( ( ,: 5, )i
_fL1- t. 0 ¢'! rl -_._,-- 7b P--l # SIszf v s."pl p



Combining the

1 o ti h eborp-36- a

a we obtain the barotropic forecast equation

/I -_ 42. 2A ( )
o I ~ ~ ~ , I

? - .S6 J+SI -jS G

IX r 'x fi4 i\d o C )-St (/D 2

by the 70

/A

4p r -

( p - j)
jT (e2

I

-1
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The purpose of this supplement to JNWP Office Note No. 15 (Revised
1 October 1960) is to provide a more logical basis for the derivation of the
scaled finite-difference barotropic equations. This supplement covers the
same material as on pp. 11-13.

The derivation proceeds from equation (2.30) on page 9, and ends
with equation (2. 34) on page 13.

Equation (2. 30):

-J (17)e 4a
Let us deal also with the evaluation
equation (2. 30a):

of vorticity. To this end we insert an

.Equation (Z. 30a):

:~~~~~1 C -1 __

'J? i)%?

V " Y- -, -,-- f
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SC A L I N G A N D FIN I T E D I F F ER E N C ES
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(e; 'j'O I- i /_)( 7: , - 7, # i.1)
Substitution into equation (Z. 30) and (2. 30a) yields equation (2. 34),

on page 13, and equation (2. 34a) which we here insert:

Equation (2. 34):

* (a -bv -) A

-, u~rc'# ~~)

Equation (Z. 34a):

A ^q2 (
77=M PAk/

J(r,
.
4.1jJ.So

-/4/. e .

-/-Io -a "I (t
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S C A L I N GSCALING
_-a

,o S ec

PARAMETERS

C/Rl
7-

.0
2 J12- VS

-/- = 0729./
Ot = ihr

J=~ 1 kniM 
d - 3g/ *a/f

--- !Sod m

rfF I

/7/

Note that the derviation of equations
of the yalues of the scaling parameters.

(2.34) and (2. 34a) is independent
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